Problem 1.39

A ball is thrown with initial speed v_{o} up an inclined plane. The plane is inclined at an angle ϕ above the horizontal, and the ball's initial velocity is at an angle θ above the plane. Choose axes with x measured up the slope, y normal to the slope, and z across it. Write down Newton's second law using these axes and find the ball's position as a function of time. Show that the ball lands a distance $R=2 v_{\mathrm{o}}^{2} \sin \theta \cos (\theta+\phi) /\left(g \cos ^{2} \phi\right)$ from its launch point. Show that for given v_{o} and ϕ, the maximum possible range up the inclined plane is $R_{\max }=v_{\mathrm{o}}^{2} /[g(1+\sin \phi)]$.

Solution

Start by drawing the free-body diagram for the ball, noting that only the force of gravity acts on it. The weight vector \mathbf{W} and its components along the x - and y-axes, \mathbf{W}_{x} and \mathbf{W}_{y}, are shown.

Draw the right triangle formed by the weight vector and its components.

Use trigonometry to determine $\left|W_{x}\right|$ and $\left|W_{y}\right|$.

$$
\begin{aligned}
& \left|W_{x}\right|=m g \sin \phi \\
& \left|W_{y}\right|=m g \cos \phi
\end{aligned}
$$

Since the weight vector components point in the negative x - and y-directions, both the components have minus signs.

$$
\begin{aligned}
& W_{x}=-m g \sin \phi \\
& W_{y}=-m g \cos \phi
\end{aligned}
$$

According to Newton's second law, the sum of the forces acting on the ball is equal to its mass times acceleration.

$$
\sum \mathbf{F}=m \mathbf{a} \Rightarrow\left\{\begin{array}{l}
\sum F_{x}=m a_{x} \\
\sum F_{y}=m a_{y} \\
\sum F_{z}=m a_{z}
\end{array}\right.
$$

The ball stays in the $x y$-plane, so the sum of the forces in the z-direction is zero.

$$
\left\{\begin{aligned}
-m g \sin \phi & =m a_{x} \\
-m g \cos \phi & =m a_{y} \\
0 & =m a_{z}
\end{aligned}\right.
$$

Divide both sides of each equation by m.

$$
\left\{\begin{aligned}
-g \sin \phi & =a_{x} \\
-g \cos \phi & =a_{y} \\
0 & =a_{z}
\end{aligned}\right.
$$

Acceleration is the second derivative of position.

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-g \sin \phi \\
\frac{d^{2} y}{d t^{2}}=-g \cos \phi \\
\frac{d^{2} z}{d t^{2}}=0
\end{array}\right.
$$

Integrate both sides of each equation with respect to t to get the components of the ball's velocity.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-g t \sin \phi+C_{1} \tag{1}\\
\frac{d y}{d t}=-g t \cos \phi+C_{2} \\
\frac{d z}{d t}=C_{3}
\end{array}\right.
$$

Use the ball's initial velocity vector $\mathbf{v}_{\mathrm{o}}=\left\langle v_{\mathrm{o}} \cos \theta, v_{\mathrm{o}} \sin \theta, 0\right\rangle$ to determine C_{1}, C_{2}, and C_{3}.

$$
\begin{array}{lll}
\frac{d x}{d t}(0)=-g(0) \sin \phi+C_{1}=v_{\mathrm{o}} \cos \theta & \rightarrow & C_{1}=v_{\mathrm{o}} \cos \theta \\
\frac{d y}{d t}(0)=-g(0) \cos \phi+C_{2}=v_{\mathrm{o}} \sin \theta & \rightarrow & C_{2}=v_{\mathrm{o}} \sin \theta \\
\frac{d z}{d t}(0)=C_{3}=0 & \rightarrow & C_{3}=0
\end{array}
$$

As a result, equation (1) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-g t \sin \phi+v_{\mathrm{o}} \cos \theta \\
\frac{d y}{d t}=-g t \cos \phi+v_{\mathrm{o}} \sin \theta \\
\frac{d z}{d t}=0
\end{array}\right.
$$

Integrate both sides of each equation with respect to t once more to get the components of the ball's position.

$$
\left\{\begin{array}{l}
x(t)=-\frac{1}{2} g t^{2} \sin \phi+v_{\mathrm{o}} t \cos \theta+C_{4} \tag{2}\\
y(t)=-\frac{1}{2} g t^{2} \cos \phi+v_{\mathrm{o}} t \sin \theta+C_{5} \\
z(t)=C_{6}
\end{array}\right.
$$

Use the fact that the ball starts from the origin $(x=0, y=0$, and $z=0$ when $t=0)$ to determine C_{4}, C_{5}, and C_{6}.

$$
\begin{array}{lll}
x(0)=-\frac{1}{2} g(0)^{2} \sin \phi+v_{\mathrm{o}}(0) \cos \theta+C_{4}=0 & \rightarrow & C_{4}=0 \\
y(0)=-\frac{1}{2} g(0)^{2} \cos \phi+v_{\mathrm{o}}(0) \sin \theta+C_{5}=0 & \rightarrow & C_{5}=0 \\
z(0)=C_{6}=0 & & \rightarrow
\end{array} C_{6}=0
$$

Consequently, equation (2) becomes

$$
\left\{\begin{array}{l}
x(t)=-\frac{1}{2} g t^{2} \sin \phi+v_{\mathrm{o}} t \cos \theta \\
y(t)=-\frac{1}{2} g t^{2} \cos \phi+v_{\mathrm{o}} t \sin \theta \\
z(t)=0
\end{array}\right.
$$

Therefore, the ball's position is

$$
\mathbf{r}(t)=\left\langle-\frac{1}{2} g t^{2} \sin \phi+v_{\mathrm{o}} t \cos \theta,-\frac{1}{2} g t^{2} \cos \phi+v_{\mathrm{o}} t \sin \theta, 0\right\rangle .
$$

To find how long it takes for the ball to return to the inclined plane, set $y(t)=0$ and solve for nonzero t.

$$
\begin{gathered}
y(t)=0 \\
-\frac{1}{2} g t^{2} \cos \phi+v_{\mathrm{o}} t \sin \theta=0 \\
t\left(-\frac{1}{2} g t \cos \phi+v_{\mathrm{o}} \sin \theta\right)=0 \\
t=0 \quad \text { or } \quad-\frac{1}{2} g t \cos \phi+v_{\mathrm{o}} \sin \theta=0 \\
t=0 \quad \text { or } \quad t=\frac{2 v_{\mathrm{o}} \sin \theta}{g \cos \phi}
\end{gathered}
$$

To find how far the ball is from the origin when it returns to the inclined plane, plug this time into $x(t)$.

$$
\begin{aligned}
x\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g \cos \phi}\right) & =-\frac{1}{2} g\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g \cos \phi}\right)^{2} \sin \phi+v_{\mathrm{o}}\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g \cos \phi}\right) \cos \theta \\
& =-\frac{1}{2} g\left(\frac{4 v_{\mathrm{o}}^{2} \sin ^{2} \theta}{g^{2} \cos ^{2} \phi}\right) \sin \phi+v_{\mathrm{o}}\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g \cos \phi}\right) \cos \theta \\
& =-\frac{2 v_{\mathrm{o}}^{2} \sin ^{2} \theta \sin \phi}{g \cos ^{2} \phi}+\frac{2 v_{\mathrm{o}}^{2} \sin \theta \cos \theta}{g \cos \phi} \\
& =\frac{-2 v_{\mathrm{o}}^{2} \sin ^{2} \theta \sin \phi+2 v_{\mathrm{o}}^{2} \sin \theta \cos \theta \cos \phi}{g \cos ^{2} \phi} \\
& =\frac{2 v_{\mathrm{o}}^{2} \sin \theta(-\sin \theta \sin \phi+\cos \theta \cos \phi)}{g \cos ^{2} \phi} \\
& =\frac{2 v_{\mathrm{o}}^{2} \sin \theta \cos (\theta+\phi)}{g \cos ^{2} \phi}
\end{aligned}
$$

This is how far the ball lands from the launch point, the range.

$$
R=\frac{2 v_{\mathrm{o}}^{2} \sin \theta \cos (\theta+\phi)}{g \cos ^{2} \phi}
$$

To determine the largest range for given v_{o} and ϕ, take the derivative with respect to θ,

$$
R^{\prime}(\theta)=\frac{d}{d \theta}\left[\frac{2 v_{\mathrm{o}}^{2} \sin \theta \cos (\theta+\phi)}{g \cos ^{2} \phi}\right]=\frac{2 v_{\mathrm{o}}^{2} \cos \theta \cos (\theta+\phi)}{g \cos ^{2} \phi}+\frac{2 v_{\mathrm{o}}^{2} \sin \theta[-\sin (\theta+\phi)]}{g \cos ^{2} \phi}
$$

set the result equal to zero, and solve the equation for θ.

$$
\begin{gathered}
\frac{2 v_{\mathrm{o}}^{2} \cos \theta \cos (\theta+\phi)}{g \cos ^{2} \phi}+\frac{2 v_{\mathrm{o}}^{2} \sin \theta[-\sin (\theta+\phi)]}{g \cos ^{2} \phi}=0 \\
\frac{2 v_{\mathrm{o}}^{2}}{g \cos ^{2} \phi}[\cos \theta \cos (\theta+\phi)-\sin \theta \sin (\theta+\phi)]=0 \\
\frac{2 v_{\mathrm{o}}^{2}}{g \cos ^{2} \phi} \cos [\theta+(\theta+\phi)]=0 \\
\frac{2 v_{\mathrm{o}}^{2}}{g \cos ^{2} \phi} \cos (2 \theta+\phi)=0 \\
\cos (2 \theta+\phi)=0 \\
2 \theta+\phi=\frac{1}{2}(2 n-1) \pi, \quad n=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

The appropriate value to choose on the right side is the first one greater than zero.

$$
\begin{gathered}
2 \theta+\phi=\frac{\pi}{2} \\
2 \theta=\frac{\pi}{2}-\phi \\
\theta_{\max }=\frac{\pi}{4}-\frac{\phi}{2}
\end{gathered}
$$

Plug this value of θ into the formula for R to get the maximum range.

$$
\begin{aligned}
R\left(\theta_{\max }\right) & =\frac{2 v_{\mathrm{o}}^{2} \sin \left(\frac{\pi}{4}-\frac{\phi}{2}\right) \cos \left[\left(\frac{\pi}{4}-\frac{\phi}{2}\right)+\phi\right]}{g \cos ^{2} \phi} \\
R_{\max } & =\frac{2 v_{\mathrm{o}}^{2} \sin \left(\frac{\pi}{4}-\frac{\phi}{2}\right) \cos \left(\frac{\pi}{4}+\frac{\phi}{2}\right)}{g \cos ^{2} \phi} \\
& =\frac{2 v_{\mathrm{o}}^{2}\left(\sin \frac{\pi}{4} \cos \frac{\phi}{2}-\cos \frac{\pi}{4} \sin \frac{\phi}{2}\right)\left(\cos \frac{\pi}{4} \cos \frac{\phi}{2}-\sin \frac{\pi}{4} \sin \frac{\phi}{2}\right)}{g \cos ^{2} \phi} \\
& =\frac{2 v_{\mathrm{o}}^{2}\left(\frac{1}{\sqrt{2}} \cos \frac{\phi}{2}-\frac{1}{\sqrt{2}} \sin \frac{\phi}{2}\right)\left(\frac{1}{\sqrt{2}} \cos \frac{\phi}{2}-\frac{1}{\sqrt{2}} \sin \frac{\phi}{2}\right)}{g \cos ^{2} \phi} \\
& =\frac{2 v_{\mathrm{o}}^{2}\left(\frac{1}{2} \cos ^{2} \frac{\phi}{2}-\sin \frac{\phi}{2} \cos ^{\frac{\phi}{2}}+\frac{1}{2} \sin ^{2} \frac{\phi}{2}\right)}{g \cos { }^{2} \phi} \\
& =\frac{v_{\mathrm{o}}^{2}\left(\cos ^{2} \frac{\phi}{2}-2 \sin \frac{\phi}{2} \cos \frac{\phi}{2}+\sin ^{2} \frac{\phi}{2}\right)}{g \cos ^{2} \phi} \\
& =\frac{v_{\mathrm{o}}^{2}\left(1-2 \sin ^{\left.\frac{\phi}{2} \cos ^{2} \frac{\phi}{2}\right)}\right.}{g \cos ^{2} \phi}
\end{aligned}
$$

Continue the simplification.

$$
\begin{aligned}
R_{\max } & =\frac{v_{\mathrm{o}}^{2}(1-\sin \phi)}{g \cos ^{2} \phi} \\
& =\frac{v_{\mathrm{o}}^{2}(1-\sin \phi)}{g\left(1-\sin ^{2} \phi\right)} \\
& =\frac{v_{\mathrm{o}}^{2}(1-\sin \phi)}{g(1+\sin \phi)(1-\sin \phi)} \\
& =\frac{v_{\mathrm{o}}^{2}}{g(1+\sin \phi)}
\end{aligned}
$$

Therefore, the maximum possible range up the inclined plane is

$$
R_{\max }=\frac{v_{\mathrm{o}}^{2}}{g(1+\sin \phi)},
$$

and it occurs if $\theta=\pi / 4-\phi / 2$.

